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A model from kinetic theory

A non-linear Fokker-Planck equation

∂t f + v · ∇x f = ρ[f ] ∇v

(
∇v f + vf

)
ρ[f ] :=

∫
f (t, x , v)dv

Original problem with C. Mouhot

First attempt: hypo-coercivity approach // energy estimate

A control of the modulus of continuity is needed (?)



Harnack inequality

(Kinetic Fokker-Planck equation)

∂t f + v · ∇x f = ∇v · (A∇v f ) in Q(0, 1)

A(t, x , v) symmetric

eigenvalues of A in [λ,Λ] with λ > 0

Theorem (Golse-CI-Mouhot-Vasseur)

Then any non-negative weak solution f in Q(0, 1) satisfies

sup
Q−

f ≤ C inf
Q+

f .
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Elliptic regularity: Hilbert’s 19th problem

Given F smooth & strictly convex
Show that minimizers of

∫
F (∇w) are analytic

Euler-Lagrange equation: ∇ · (∇F (∇w)) = 0

Differentiate the equation:
u = ∂iw solves ∇ · (A∇u) = 0
with Aij = ∂i ,jF (∇w)

Schauder: w ∈ C 1,α ⇒ A ∈ C 0,α ⇒ u is smooth

Classical theory: w smooth ⇒ w is analytic

How to reach w ∈ C 1,α?
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Elliptic regularity: Hilbert’s 19th problem

∇(A∇u) = 0 in B1

How to reach u ∈ C 0,α?

De Giorgi (1956) proves an L2 − L∞ bound and shows that it
implies the decrease of oscillation thanks to an isoperimetric
lemma

Nash (1958) used estimates on the fundamental solution

Moser (1961) gets the L2 − L∞ bound through an iteration
procedure and reaches a Harnack inequality by relating
positive and negative Lebesgue norms (through the study of ln u)
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Hypoelliptic equations

The case A ≡ Id : ∂t f + v · ∇x f = ∆v f

Kolmogoroff (1934):

Explicit fundamental solution
The equation has a regularizing effect

Hörmander (1967):

Starting point for hypoelliptic theory
Commutator estimates



Scaling, transformation and cylinders

Scaling: f (r2t, r3x , rv) satisfies the same equation for any r > 0

Transformation: Tz0(z) = (t0 + t, x0 + x + tv0, v0 + v)

Cylinders: Q(0, r) = (−r2, 0]× B(0, r3)× B(0, r)



Convex change of unknown and energy

Convex function ϕ: if f is a solution then ϕ(f ) is a subsolution

ϕ(f ) = max(f , 0) = f+

ϕ(f ) = f q+ with q ≥ 1

Central energy estimate:∫
f 2Ψ2|t=t1 + λ

∫
|∇v f |2Ψ2 ≤ C

∫
Q0

f 2

for Ψ supported in Q0 and vanishing at initial time



Towards Hölder regularity / Harnack inequality

Hölder regularity

Get osc
Q(0,r)

f ≤ Crα with C > 0, α ∈ (0, 1)

It is enough to get osc
Q(0,2−k )

f ≤ θk osc
Q(0,1)

f with θ ∈ (0, 1)



How to reach the algebraic decay of the oscillation

Prove that L2 solutions are in fact Lp for p > 2

Iterate this result to get that they are in fact L∞

Get decrease of oscillation from a large box to a smaller one

osc
Q(0,1/2)

f ≤ θ osc
Q(0,1)

f with θ ∈ (0, 1)

Harnack inequality

The decrease of oscillation is needed ...

... combined with “the propagation of minima”
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The L2 − L∞ bound

Theorem (Pascucci-Polidoro // GIMV)

∂t f + v · ∇x f = ∇v (A∇v f ) in Q0

⇒ ‖f +‖L∞(Q1) ≤ C‖f +‖L2(Q0)

where C = C(d, λ, Λ,Q0,Q1)

Sketch of the proof (Moser’s iteration)

f + is a sub-solution

Find p > 2 universal s.t.

f sub-solution
f ≥ 0

⇒ ‖f ‖Lp(Q 1
2

) ≤ C0, 1
2
‖f ‖L2(Q0)

with C
0, 1

2
= C(Q0,Q 1

2
)

q > 1⇒ f q+ is a sub-solution

Iterate (the power & the cube)
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Local gain of integrability

f sub-solution
f ≥ 0

⇒ ‖f ‖Lp(Q 1
2

) ≤ C0, 1
2
‖f ‖L2(Q0)

Assume first that f is a solution

Recall the

improved

central energy estimate:

λ

∫
|∇v f |2Ψ2

+ ‖D
1
3
x f ‖2

L2(Q 1
2

) + ‖D
1
3
t f ‖2

L2(Q 1
2

)

≤ C

∫
Q0

f 2

the Sobolev embedding thm yields local gain of integrability

Assume now that f is a sub-solution

Associate with sub-sol’n F the sol’n F̃ of the transport eq’n

Get improvement of regularity for F̃

Use comparison principle to transfer gain of int. from F̃ to F
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Averaging lemma / transfer of regularity

Agoshkov, Golse-Perthame-Sentis (’84,’85)
Transfer of regularity for (v) variable to (x , t) variables.

A result by Bouchut (2002)
Given F ∈ L2 with DvF ∈ L2 satisfying

∂tF + v · ∇xF = ∇v · g1 + g0

we have

‖D
1
3
t F‖2 + ‖D

1
3
x F‖2 ≤ ‖F‖2 + ‖DvF‖2 + ‖g0‖2 + ‖g1‖2

Application
Take F = f Ψ where Ψ = cut-off of the central energy estimate

λ

∫
|∇v f |2Ψ2+‖D

1
3
x f ‖2

L2(Q1) + ‖D
1
3
t f ‖2

L2(Q1) ≤ C

∫
Q0

f 2
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Improvement of oscillation

Reduce to the case f ∈ [−1, 1]

Two ways to decrease oscillation

If f lies “more below 0 than above”,
then the supremum decreases
If f lies “more above 0 than below”,
then the infimum increases
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Decrease of the upper bound

Assume
|f | ≤ 1 in Q(0, 2)

|{f ≤ 0} ∩ Q̂| ≥ 1
2 |Q̂|

Find λ ∈ (0, 1) s.t. f ≤ 1− λ in Q(0, ω/2)

Information in measure translates into a pointwise estimate
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Truncation

Define fk0 = θ−k0(f − (1− θk0))

Find k0 : |{fk0 ≥ 0} ∩ Q(0, ω)| ≤ δ1

Consequence

‖f +
k0
‖L∞(Q(0,ω/2)) ≤ C‖f +

k0
‖L2(Q(0,ω)) ≤ C

√
δ1 ≤ 1− θ

Finally, f ≤ 1− θk0+1 = 1− λ



Iterative truncation

If |{fk+1 ≥ 0}| ≥ δ1

fk = θ−k(f − (1− θk))

fk+1 = θ−1(fk − (1− θ))

{fk+1 ≥ 0} = {fk ≥ 1− θ}
{fk+1 ≤ 0} ⊃ {fk ≤ 0}

Then

|{fk ≥ 1− θ| ≥ δ1

|{fk ≤ 0}| ≥ δ2



A hypoelliptic intermediate-value lemma (à la de Giorgi)

Theorem (GIMV)

for all f ≤ 1 solution in Q(0, 2) such that{
|{f ≥ 1− θ} ∩ Q(0, ω)| ≥ δ1

|{f ≤ 0} ∩ Q̂| ≥ δ2

then

|{0 < f < 1− θ} ∩ Q(0, 1) ∪ Q̂| ≥ α

De Giorgi’s classical argument: if an H1 function takes values
above 1− θ and below 0, intermediate values “occupy some
non-negligeable space” (quantitative version)
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Iterative truncation (again)
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Iterative truncation (again)

If |{fk+1 ≥ 0}| ≥ δ1

fk = θ−k(f − (1− θk))

fk+1 = θ−1(fk − (1− θ))

{fk+1 ≥ 0} = {fk ≥ 1− θ}
{fk+1 ≤ 0} ⊃ {fk ≤ 0}

Then
α ≤ |{1− θk < f < 1− θk+1}|



Iterated truncation (again and again)
Graph and level sets



The intermediate-value lemma: sketch of the proof

Proof by contradiction

Solutions fk ≤ 1, matrices Ak , θk → 0

|{fk ≥ 1− θk} ∩ Q(0, ω)| ≥ δ1

|{fk ≤ 0 ∩ Q̂| ≥ δ2

|{0 < fk < 1− θk} ∩ Q(0, 1) ∪ Q̂| → 0

Fk = f +
k = max(fk , 0) ∈ [0, 1] is a sub-solution

Refined averaging lemma ⇒ to pass to the limit
Fk → F ∈ [0, 1] with

|{F = 1} ∩ Q(0, ω)| ≥ δ1

|{F = 0 ∩ Q̂| ≥ δ2

|{0 < F < 1} ∩ Q(0, 1) ∪ Q̂| = 0.



The intermediate-value lemma: sketch of the proof

F (t, x , v) = 1P(t, x) with

∂tF + v · ∇xF ≤ 0 with t ∈ (−2, 0)

|P ∩ Q(0, ω)| ≥ δ1

|Q̂ \ P| ≥ δ2

Study the propagation of {F = 0}
reach a contradiction



Harnack inequality
Two ingredients

Decrease of oscillation:

|f | ≤ 1 in Q(0, 2) ⇒ osc f ≤ 1− θ in Q(0, ω)

Propagation of minima:

∀z ∈ Q−, min
Q+

f & rq min
Q(z,r)

f



Related results - perspectives

Related results

Improved integrability of ∇v f

Regularity of sub-solutions

Source terms

Under progress - perspectives

Quantitative version of the intermediate-value lemma

Consequence for the Landau equation

Integro-differential setting ... towards Boltzmann equation
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