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@ Kinetic Fokker-Planck equations with rough coefficients

© The L2 — L bound (following Moser)

© Improvement of oscillation (following de Giorgi)
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A model from kinetic theory

A non-linear Fokker-Planck equation

Oif + v - Vi f plf] Vi (V. f + vf)

/f(t,x, v)dv

@ Original problem with C. Mouhot

plf]

e First attempt: hypo-coercivity approach // energy estimate
@ A control of the modulus of continuity is needed (?)
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Harnack inequality

: +
(Kinetic Fokker-Planck equation) : IQ—I

Ouf +v - Vif =V, - (AV,F) in Q(0,1) :
A(t, x, v) symmetric

eigenvalues of A in [A,A] with A >0 : Q@,1)

Theorem (Golse-Cl-Mouhot-Vasseur)

Then any non-negative weak solution f in Q(0,1) satisfies

supf < Cinf f.
Q- Qr
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Harnack inequality

(Kinetic Fokker-Planck equation) IQ_+|

Of +v - Vif =V, - (AV,f) in Q(0,1)

A(t, x, v) symmetric
eigenvalues of A in [\, A] with A > 0 Q0,1)

@ Boundedness of solutions by Pascucci-Polidoro (2004)
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Harnack inequality

(Kinetic Fokker-Planck equation) IQ—+|

Of +v - Vif =V, - (AV,f) in Q(0,1)

A(t, x, v) symmetric
eigenvalues of A in [\, A] with A > 0 Q0,1)

@ Boundedness of solutions by Pascucci-Polidoro (2004)
e Hdlder continuity of solutions by Wang & Zhang (2009)
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Harnack inequality

(Kinetic Fokker-Planck equation) IQ—+|

Of +v - Vif =V, - (AV,f) in Q(0,1)

A(t, x, v) symmetric
eigenvalues of A in [\, A] with A > 0 Q0,1)

@ Boundedness of solutions by Pascucci-Polidoro (2004)
e Hdlder continuity of solutions by Wang & Zhang (2009)
@ Decisive interaction with Luis Silvestre
®
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Elliptic regularity: Hilbert's 19t" problem

Given F smooth & strictly convex
Show that minimizers of [ F(Vw) are analytic

Euler-Lagrange equation: V- (VF(Vw)) =0

u = 0jw solves V - (AVu) =0

o Differentiate the equation: with A; = 0, F(Vw)

e Schauder: w € C1® = A e C% = y is smooth

Classical theory: w smooth = w is analytic
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How to reach w € C1.@? -
@



Elliptic regularity: Hilbert's 19t" problem

V(AVu)=0 in B

How to reach u e C%?



Elliptic regularity: De Giorgi-Nash-Moser

V(AVu)=0 in B
How to reach u e C%?

o De Giorgi (1956) proves an L2 — L° bound and shows that it
implies the decrease of oscillation thanks to an isoperimetric
lemma

@ Nash (1958) used estimates on the fundamental solution

o Moser (1961) gets the L? — L bound through an iteration
procedure and reaches a Harnack inequality by relating
positive and negative Lebesgue norms (through the study of In u)
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Hypoelliptic equations

The case A = [d: Oif +v-Vif =A,f

e Kolmogoroff (1934):

e Explicit fundamental solution
e The equation has a regularizing effect

@ Hormander (1967):

e Starting point for hypoelliptic theory
o Commutator estimates
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Scaling, transformation and cylinders

Scaling: f(r’t, r’x, rv) satisfies the same equation for any r > 0

Transformation: T (z) = (to + t, x0 + x + tvy, vo + V)

. 7;31

Cylinders: Q(0,r) = (—r2,0] x B(0,r®) x B(0, r) @ 0

ENS



Convex change of unknown and energy

Convex function ¢: if f is a solution then o(f) is a subsolution
o ¢(f) =max(f,0)=f;
o o(f)=f] with g > 1

Central energy estimate:

/f2\ll2|t:tl +A/|va|2w2 <Cc /[ f
Qo

for W supported in Qp and vanishing at initial time
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Towards Holder regularity / Harnack inequality

Holder regularity

Get | osc f < Cr*|with C >0, a € (0,1)
Q(0,r)

It is enough to get| osc f < 6% osc f|with 6 € (0,1)
Q(0,27F) Q(0,1)
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How to reach the algebraic decay of the oscillation

@ Prove that L? solutions are in fact LP for p > 2

@ lterate this result to get that they are in fact L*°

@ Get decrease of oscillation from a large box to a smaller one

osc f <6 oscf
Q(0,1/2) Q(0,1)

Harnack inequality

with 6 € (0,1)

@ The decrease of oscillation is needed ...

@ ... combined with “the propagation of minima"
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© The L2 — L bound (following Moser)



The L? — L* bound
Theorem (Pascucci-Polidoro // GIMV)

Oef + v - Vyf =V, (AV, ) in Qo
= 1l (o) < ClIF i2(qu)

where C = C(d, A\, A, Qp, Q1)

Sketch of the proof (Moser's iteration)
e fT is a sub-solution

T
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The L? — L* bound
Theorem (Pascucci-Polidoro // GIMV)

Oef + v - Vyf =V, (AV, ) in Qo
= 1l (o) < ClIF i2(qu)

where C = C(d, A\, A, Qp, Q1)

Sketch of the proof (Moser's iteration)

1.0

12|

e T is a sub-solution
e Find p > 2 universal s.t.

f sub-solution
f>0 = Hf”L”(Q%) < CO,%HfHB(QO)

with C

0.1 = (@, Q)
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The L2 — L*> bound

Theorem (Pascucci-Polidoro // GIMV)

Oef + v - Vyf =V, (AV, ) in Qo
= 1l (o) < ClIF i2(qu)

where C = C(d, A\, A, Qp, Q1)

Sketch of the proof (Moser's iteration)
e fT is a sub-solution

1.0

12|

e Find p > 2 universal s.t.

f sub-solution
f>0

= Ifllee(ey) = CotlIflliz (o)

with C, 1 = C(Qo, Q1)
2

1
2
e g>1= fis a sub-solution
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The L2 — L*> bound

Theorem (Pascucci-Polidoro // GIMV)

Oef + v - Vyf =V, (AV, ) in Qo
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12|

e Find p > 2 universal s.t.

f sub-solution

= Ifllee(ey) = CotlIflliz (o)

f>0
with C, 1 = C(Qo, Q1)
’2 2

e g>1= fis a sub-solution
o Iterate (the power & the cube)
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The L? — L* bound
Theorem (Pascucci-Polidoro // GIMV)

Of + v - Vif = Vo (AV,F)  in Qo
= 1 s (qu) < ClIFIli2(Qo)

where C = C(d, A\, A\, Qp, Q1)

Sketch of the proof (Moser's iteration)
e f* is a sub-solution
e Find p > 2 universal s.t.

f sub-solution
F>0 = ||fHLP(Q%) < Co M1l (qo)

with C 1 = C(Qp, Q1)
0.3 2

e g > 1= f]is a sub-solution @

o Iterate (the power & the cube) ENS



Local gain of integrability

f sub-solution
f>0

= Ifller(ey) = Coallflliz(an)

T
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Local gain of integrability

f sub-solution
f>0

= Ifller(ey) = Coallflliz(an)

Assume first that f is a solution

@ Recall the central energy estimate:

A/!va|2\|f2 < C/ £2
Qo
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Local gain of integrability

f sub-solution
f>0

= Ifller(ey) = Coallflliz(an)

Assume first that f is a solution

@ Recall the improved central energy estimate:

1 1
)\/ IV, fI2W2 4 || D2 fH%Z(Ql) + ||Dt3f||%2(01) = C/Q f*
5 2 0
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Local gain of integrability

f sub-solution
f>0

= Ifller(ey) = Coallflliz(an)

Assume first that f is a solution

@ Recall the improved central energy estimate:

1 1
)\/ IV, fI2W2 4 || D2 fH%Z(Ql) + ||Dt3f||%2(01) = C/Q f*
5 2 0

@ the Sobolev embedding thm yields local gain of integrability
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Local gain of integrability

f sub-solution

2 = [Ifllcay) < Co3MFllgan

Assume first that f is a solution

@ Recall the improved central energy estimate:

) 1
)\/ IV, fI?W2 + || D2 fuiz(Ql) + ||Dt3f||%2(01) = C/Q f*
5 2 0

@ the Sobolev embedding thm yields local gain of integrability
Assume now that f is a sub-solution

o Associate with sub-sol'n F the sol'n F of the transport eq’n

@ Get improvement of regularity for F

@ Use comparison principle to transfer gain of int. from FtoF
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Averaging lemma / transfer of regularity

Agoshkov, Golse-Perthame-Sentis ('84,'85)
Transfer of regularity for (v) variable to (x, t) variables.

A result by Bouchut (2002)
Given F € L2 with D, F € L? satisfying
(0cF +v -V F =V, g +g]

we have

1 1
ID¢ Fll2 + IDZ Fll2 < [[Fll2 + [DvFll2 + [lgoll2 + llgall2

Application
Take F = fWV where VW = cut-off of the central energy estimate

1 1
A/Ivvf\2w2+!Dx3 FllZ2(qu) + 107 Fllizqy) < C/o :
0
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© Improvement of oscillation (following de Giorgi)



Improvement of oscillation

@ Reduce to the case f € [—1,1]
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@ Reduce to the case f € [—1,1]

@ Two ways to decrease oscillation
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Improvement of oscillation

@ Reduce to the case f € [-1,1]

/_/ . -
@ Two ways to decrease oscillation

o If f lies “more below 0 than above”,
then the supremum decreases
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Improvement of oscillation

\ @ Reduce to the case f € [-1,1]

L‘\ ﬂ @ Two ways to decrease oscillation
L o If f lies “more below 0 than above”,

\ = then .the supremum decreases
o If f lies “more above 0 than below”,

then the infimum increases
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Decrease of the upper bound

|f| < 1in Q(0,2)

Assume

(F<0}n Q] > 1[0 I ] o)

Find A € (0,1) st. [f <1—Xin Q(0,w/2)]
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Decrease of the upper bound

Ak:-::
[f] <1in Q(0,2) :
Assume — - 1
{f <0}n Q| >3Q| 1] | Q1)
Find A€ (0,1) st. [f <1—Xin Q(0,w/2)] 2“ 0(02)

Information in measure translates into a pointwise estimate
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Truncation

1—gho I -

—

Define f,, = 0% (f — (1 — 6%))

[Find ko« [{fi, > 0} N QO,w)[ <& | °F

g

Consequence

o [T lle(qrow2)) < Cllfilliz(qrowy) < CVo1 <

o Finally, | f <1 — ghotl =




[terative truncation

IF [{fira > 0} > 0 |
1 — gkt
1— 6k
fo = 07K(f—(1-6))
firr = 07 (R —(1-0)) 0
{fisr =0 = {fiz1-0}
{firr =0} 5 {fi<0}

{fi>1-60]>6
[{fi <0} > &

7 > 6
v




A hypoelliptic intermediate-value lemma (a la de Giorgi)

Theorem (GIMV)
for all f <1 solution in Q(0,2) such that

{ Hf >1-0}NnQ(0,w)| > 0

{f<0}n Q| >d -
then PR

1| 02 |

o< f<1-0}nQO,1)UQ| >«

Q(0,1)

A

T
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A hypoelliptic intermediate-value lemma (a la de Giorgi)

Ao
Theorem (GIMV) :
for all f <1 solution in Q(0,2) such that |
‘{f >1— 0} N Q(O,w)\ > 6 Q(0,1)
{f <0} Q| > -
then 2—— =
. Il Qo2 |
fo<f<i-opnQoyudza L T |

De Giorgi's classical argument: if an H® function takes values
above 1 — @ and below 0, intermediate values “occupy some
non-negligeable space”
@
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A hypoelliptic intermediate-value lemma (a la de Giorgi)

A
Theorem (GIMV) :
for all f <1 solution in Q(0,2) such that |
‘{f >1-— 0} N Q(O,w)‘ > 6 Q(0,1)
{f <0} Q= d 1
then 2——
) Il Qo2 |
<f<i-gpnQoyuza L T |

De Giorgi's classical argument: if an H® function takes values
above 1 — @ and below 0, intermediate values “occupy some
non-negligeable space” (quantitative version)



lterative truncation (again)

If [{fxy1 >0} =61 1
179k+1
K P 1 -6k
fi = 07K(F—(1-09)
fir1 = 07— (1-0))
{fiy1 >0} {fhk>1-0}
{fks1 <0} D {fik <0}

Then

Hfk>1—-6]>
{fk <0} > o2




lterative truncation (again)

If [{fis1 > 0} > o1 !
1 gi+1 22, 201
1— 0% /}\\\\\i\\s\

fkyr =

T a
% >
{fit120} = {216} j/% \\%

{fix1 <0} DO {fi <0}

Then
a<|{0<f<1-—0}



lterative truncation (again)

If |{fxr1 > 0} > 61 1
1 gh+1 % 251
_k PR AN
fk = (f — (1 —69))

fkyr =

T a
% >
{fit120} = {216} j/% \\%

{fix1 <0} DO {fi <0}

Then
a<|[{1-60<f<1—01}



lterated truncation (again and again)

Graph and level sets

1 —@ko

2

R
 AIARRAY
)

Lo
7 &

VIV IVIV
S o

[o3e]

@ L
ENS



The intermediate-value lemma: sketch of the proof

Proof by contradiction

@ Solutions fx < 1, matrices Ax, 6 — 0

H{fk > 1 =0k} N Q0,w)| > 01
{fi <0NQ| > 6
Ho< i <1—0,NQ0,1)UQ| —0

o Fi = f;" = max(f,0) € [0,1] is a sub-solution

o Refined averaging lemma = to pass to the limit
Fr — F € [0, 1] with

{F=1}NnQ(0,w)| = d1
{F=0nQ| >0
{0< F<1}nQ(0,1)UQ|=0.

T
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The intermediate-value lemma: sketch of the proof

F(t,x,v) =1p(t,x) with

(0cF + vV F <0 with t € (=2,0)]

PN Q(0,w)| > d1
|Q\ P| > 6,

24

o>

e Study the propagation of {F = 0}

@ reach a contradiction
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Harnack inequality
Two ingredients

@ Decrease of oscillation:

11 <1]in Q(0,2) = [oscf <1—6]in Q(0,w)

o Propagation of minima:

Vze Q, minf 2 r? min f L]
Q* Q(z,r)
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Related results - perspectives

Related results
@ Improved integrability of V, f
@ Regularity of sub-solutions

@ Source terms

Under progress - perspectives
@ Quantitative version of the intermediate-value lemma
@ Consequence for the Landau equation

@ Integro-differential setting ... towards Boltzmann equation
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