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Swarming in Nature
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Individual Based Models

Figure: 3 Zones
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Cucker-Smale model

Let (xi , vi ) be the position and velocity of i-th particle. Then Cucker-Smale model
reads as

dxi

dt
= vi , t > 0, i = 1, · · · ,N,

dvi

dt
=

1

N

N∑
j=1

ψ(xj − xi )(vj − vi ), ψ(x) :=
1

(1 + |x |2)β/2
, β ≥ 0.

Definition: Let P := {(xi , vi )}Ni=1 be an N-body interacting system. Then P exhibits
a flocking if and only if the following two relations hold:

lim
t→∞

|vi (t)− vj (t)| = 0 and sup
0≤t<∞

|xi (t)− xj (t)| <∞, 1 ≤ i , j ≤ N.

Property: Conservation of momentum.

Flocking estimate: If
∫∞ ψ(r) dr =∞ (⇐⇒ β ≤ 1), then we have

sup
0≤t<∞

max
1≤i,j≤N

|xi (t)− xj (t)| <∞ and max
1≤i,j≤N

|vi (t)− vj (t)| ≤ Ce−Ct for t ≥ 0.

Ref.- Cucker-Smale(2007), Ha-Tadmor(2008), Ha-Liu(2009),

Carrillo-Fornasier-Rosado-Toscani(2010), ...
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Numerical Simulation

by Sergio Pérez
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Kinetic Cucker-Smale equation

When N →∞, the macroscopic observables for Cucker-Smale model can be
calculated from the velocity moments of the density function f = (x , v , t) which is a
solution to the following Vlasov-type equation:

∂t f + v · ∇x f +∇v · [F (f )f ] = 0, (x , v) ∈ Rd × Rd ,

F (f )(x , v , t) :=

∫
Rd×Rd

ψ(x − y)(w − v)f (y ,w , t) dydw .

Flocking: ∫
|v − vc |2f dxdv → 0 as t →∞ where vc =

∫
v f dxdv∫
f dxdv

.

Several drawbacks:

- Collision between individuals

- Dynamics away from equilibrium

- Vision geometrical constraints

- ....

Ref.- Cucker-Dong(2010), Park-Kim-Ha(2010), Motsch-Tadmor(2011), Ahn-Choi-Ha-Lee(2012),

Agueh-Illner-Richardson(2011), ...
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Collision avoidance between individuals
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Previous work

Cucker-Smale model with collision avoiding forces:

dxi

dt
= vi , t > 0, i = 1, · · · ,N,

dvi

dt
=

1

N

N∑
j 6=i

ψ(xi − xj )(vj − vi )︸ ︷︷ ︸
Alignment

−
1

N

N∑
j 6=i

∇K(xi − xj )︸ ︷︷ ︸
Attraction/Repulsion

, ψ(x) =
1

(1 + |x |2)β/2
.

Ref.- Cucker-Dong(2010), Ha-Park-Kim(2010), Yang-Chen(2014), ...
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Numerical simulation

• K(x) = kφ(x)− α |x|
2

2
where ∆φ = δ0.

by Sergio Pérez
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Singular communication weights

Cucker-Smale model with singular communication weights:

dxi

dt
= vi , t > 0, i = 1, · · · ,N,

dvi

dt
=

1

N

N∑
j=1

ψ(xj − xi )(vj − vi ), ψ(x) = ψs(x) :=
1

|x |α
, α > 0.

(1)

Flocking estimate: Let α ≥ 1. Suppose that the initial data satisfies

‖v0 − vc (0)‖`∞ <
1

2

∫ ∞
2‖x0−xc (0)‖`∞

ψ(s) ds.

Then there exist positive constants c1 > c0 > 0 such that

‖x(t)− xc (0)‖`∞ ∈ [c0, c1] and ‖v(t)− vc (0)‖`∞ ≤ ‖v0 − vc (0)‖`∞e−ψ(2c1)t .

Ref.- Ahn-Choi-Ha-Lee(2012)
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Singular communication weights
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Sharp condition to avoid collision

Finite-time collision estimate(α < 1): Let d = 1. If we consider the two-particle
system, then the following statements are equivalent:

1. There exists a time t0 <∞ such that φ(t0) = φ̇(t0) = 0.

2. Initial data satisfy
φ̇(0) = −2Ψ(φ(0)),

where Ψ(s) := 1
1−α s

1−α is a primitive of φ and φ(t) = x1(t)− x2(t).

Non collision estimate(α ≥ 1): Suppose that the initial data (x0, v0) are
non-collisional, i.e., they satisfy

xi0 6= xj0 for 1 ≤ i 6= j ≤ N.

Then the system (1) admits a unique smooth solution. Moreover, the trajectories of
this solution are also non-collisional, i.e.,

xi (t) 6= xj (t) for 1 ≤ i 6= j ≤ N, t ≥ 0.

Ref.- Peszek(2014), Carrillo-C.-Mucha-Peszek(work in progress)
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Cucker-Smale model with singular communication weights

Main equation:

∂t f + v · ∇x f +∇v ·
(
F (f )f

)
= 0, (x , v) ∈ Rd × Rd , t > 0, (2)

where F denotes the alignment force between particles:

F (f )(x , v , t) =

∫
ψ(x − y)(w − v)f (y ,w) dydw , ψ(x) =

1

|x |α
with α ∈ (0, d − 1).

Definition: For a given T ∈ (0,∞), f is a weak solution of (3) on the time-interval
[0,T ) if and only if the following condition are satisfied:

(i) f ∈ L∞(0,T ; (L1
+ ∩ Lp)(Rd × Rd )) ∩ C([0,T ];P1(Rd × Rd )),

(ii) f satisfies the equation (3) in the weak sense.
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Local existence and uniqueness of weak solutions

Theorem(Carrillo-C.-Hauray, 2014): Suppose that f 0 is compactly supported in
velocity and (α+ 1)p′ < d , and the initial data f 0 satisfies

f 0 ∈ (L1
+ ∩ Lp)(Rd × Rd ) ∩ P1(Rd × Rd ).

Then there exist T > 0 and unique weak solution f to the system (3) in the sense of
Definition 1 on the time interval [0,T ]. Furthermore, if fi , i = 1, 2 are two such
solutions to (3), then we have the following d1-stability estimate.

d

dt
d1(f1(t), f2(t)) ≤ Cd1(f1(t), f2(t)), for t ∈ [0,T ],

where C is a positive constant.
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Idea of Proof

(Regularization) The approximate solutions are obtained by solving:
∂t fε + v · ∇x fε +∇v ·

[
F ε(fε)fε

]
= 0, (x , v) ∈ Rd × Rd , t > 0,

F ε(fε)(x , v , t) :=

∫
Rd×Rd

ψε(x − y)(w − v)fε(y ,w , t)dydw ,

fε(x , v , 0) =: f 0(x , v).

where ψε := ψ ? θε.

(Support estimate of fε in velocity) Consider the forward bi-characteristics
(Xε(s; 0, x , v),Vε(s; 0, x , v)) satisfying the following ODE system:

dXε(s)

ds
= Vε(s),

dVε(s)

ds
=

∫
Rd×Rd

ψε (Xε(s)− y) (w − Vε(s))fε(y ,w , s)dydw .

Set Ωε(t) and Rv
ε (t) the v -projection of compact suppfε(·, t) and maximum value of

v in Ωε(t), respectively:

Ωε(t) := {v ∈ Rd : ∃(x , v) ∈ Rd × Rd such that fε(x , v , t) 6= 0}, Rv
ε (t) := max

v∈Ωε(t)
|v |.

Then we have
Rv
ε (t) ≤ Rv

ε (0) = Rv
0 := max

v∈Ω(0)
|v |.
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Idea of Proof(Conti.)

(Uniform bound estimate): Let fε be the solution to regularized equation. Then there
exists a T > 0 such that the uniform L1 ∩ Lp-estimate of fε

sup
t∈[0,T ]

‖fε‖L1∩Lp ≤ C ,

holds, where C is a positive constant independent of ε.

(fε is a Cauchy sequence): Let fε and fε′ be two solutions of the regularized equation.
Then there exists C independent of ε and ε′ such that

d

dt
d1(fε(t), fε′ (t)) ≤ C(d1(fε(t), fε′ (t)) + ε+ ε′) ,

holds for all t ≥ 0.

(Passing to the limit ε→ 0): The limit curve of measure f obtained from the above is
a solution of the equation (3).

Open question: Rigorous derivation of the mean-field limit

15 / 29



Introduction Singular communication weights Normalized communication weights Sharp sensitivity regions

Further extensions: Flocking models with singular kernels

Main equation:

∂t f + v · ∇x f +∇v ·
(
F (f )f

)
= 0, (x , v) ∈ Rd × Rd , t > 0, (3)

where F denotes the alignment force between particles:

F (f )(x , v , t) = −
∫
Rd×Rd

ψ(x − y)∇vφ(v − w)f (y ,w , t)dydw .

Here, the potential function φ(v) for the velocity coupling is given by

φ(v) =
1

β
|v |β , where β > 0.

Two different cases:

• Singular communication weight and super-linear velocity coupling:

ψ(x) = ψ1(x) :=
1

|x |α
with α ∈ (0, d − 1) and β ≥ 2.

• Regular communication weight and sub-linear velocity coupling:

ψ(x) = ψ2(x) ≥ 0 symmetric, with ψ2 ∈ (L∞loc ∩ Liploc ) (Rd ) and β ∈
(

3− d

2
, 2

)
.
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Normalized communication weights

Cucker-Smale model:

dxi

dt
= vi , t > 0, i = 1, · · · ,N,

dvi

dt
=

1

N

N∑
j=1

ψ(xj − xi )(vj − vi ), ψ(x) =
1

(1 + |x |2)β/2
.

Cucker-Smale model with normalized communication weights:

dxi

dt
= vi , t > 0, i = 1, · · · ,N,

dvi

dt
=

1∑N
k=1 ψ(xi − xk )

N∑
j=1

ψ(xj − xi )(vj − vi ).

• Motsch-Tadmor(2011)∫ ∞
ψ2(r) dr =∞ =⇒ Flocking

Ref.- Tadmor-Tan (2014):
∫∞ ψ(r) dr = ∞ =⇒ Flocking
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Numerical simulation

by Sergio Pérez
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Interacting diffusing particle systems and kinetic equation

Interacting diffusing particle system:

dxi = vidt, t > 0, i = 1, · · · ,N,

dvi =
1∑N

k=1 ψ(xi − xk )

N∑
j=1

ψ(xj − xi )(vj − vi )dt +
√

2dBi .

Kinetic model:

∂tF + v · ∇xF +∇v · ((ũF − v)F ) = ∆vF , x ∈ Rd , v ∈ Rd ,

where ũF is given by

ũF (x , t) :=
(ψ ? bF )(x , t)

(ψ ? aF )(x , t)
,

with

aF (x , t) :=

∫
Rd

F (x , v , t) dv and bF (x , t) :=

∫
Rd

vF (x , v , t) dv .

Consider the singular limit in which the communication weight ψ converges to a Dirac
distribution.

ũF → uF :=
bF

aF
=

∫
Rd vF dv∫
Rd F dv

.

Ref.- Karper-Mellet-Trivisa(2014)
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∂tF + v · ∇xF +∇v · ((ũF − v)F ) = ∆vF , x ∈ Rd , v ∈ Rd ,
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Perturbation framework

Nonlinear Fokker-Planck equation:

∂tF + v · ∇xF = ∇v · (∇vF + (v − uF )F ).

Define the perturbation f = f (x , v , t) by

F = M +
√
Mf , M = M(v) =

1

(2π)d/2
exp

(
−
|v |2

2

)
The equation for the perturbation f satisfies

∂t f + v · ∇x f + uF · ∇v f = Lf + Γ(f , f ), (4)

where the linear part Lf and the nonlinear part Γ(f , f ) are given by

Lf :=
1
√
M
∇v ·

(
M∇v

(
f
√
M

))
and Γ(f , f ) = uF ·

(
1

2
vf + v

√
M

)
,

respectively.

Γ(f , f ) is not bilinear!

Ref.- Duan-Fornasier-Toscani(2010), Karper-Mellet-Trivisa(2013)
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Global classical solutions and time-asymptotic behavior

Theorem(C. 2015): Let d ≥ 3 and s ≥ 2[d/2] + 2. Suppose F0 ≡ M +
√
Mf0 ≥ 0

and ‖f0‖Hs ≤ ε0 � 1. Then we have the global existence of the unique classical
solution f (x , v , t) to the equation (4) satisfying

f ∈ C([0,∞);Hs(Rd × Rd )), F ≡ M +
√
Mf ≥ 0,

and

‖f (t)‖2
Hs + c1

∫ t

0
‖∇x (a, b)‖2

Hs−1ds + c1

∫ t

0

∑
0≤k+l≤s

‖∇k
x∇l

v{I−P}f ‖2
µds ≤ c2‖f0‖2

Hs ,

for some positive constants c1, c2 > 0. Furthermore, if ‖f0‖L2
v (L1) is bounded, we have

‖f (t)‖Hs ≤ C
(
‖f0‖Hs + ‖f0‖L2

v (L1)

)
(1 + t)−

d
4 , t ≥ 0,

where C is a positive constant independent of t.

Idea of proof: Careful analysis of the nonlinear dissipation term + Coercivity of the
linear operator L + Hypocoercivity for a modified linearized Cauchy problem with a
non-homogeneous microscopic source.

21 / 29



Introduction Singular communication weights Normalized communication weights Sharp sensitivity regions

Collective behavior models with sharp sensitivity regions
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Collective behavior models at particle and kinetic levels

Particle system:

dxi

dt
= vi , t > 0, i = 1, · · · ,N,

dvi

dt
=
∑
j 6=i

mj1K(vi )
(xi − xj )(vj − vi ),

where 1K(vi )
is the indicator function on the set K(vi ). Here {xi}Ni=1, {vi}Ni=1, {mi}Ni=1

are the position, velocity, and weight of i-th particle, respectively.

Kinetic equation: As a mean-field limit, we consider

∂t f + v · ∇x f +∇v · [F (f )f ] = 0, (x , v) ∈ Rd × Rd , t > 0, (5)

where F (f ) is a alignment force of velocities given by

F (f )(x , v , t) =

∫
Rd×Rd

1K(v)(x − y)(w − v)f (y ,w) dydw .
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Main assumptions

(H1): K(v) is globally compact, i.e., K(v) is compact and there exists a compact set
K such that K(v) ⊆ K for all v ∈ Rd .

(H2): There exists a family of closed sets v 7→ Θ(v) and a constant C such that:

- ∂K(v) ⊂ Θ(v), for all v ∈ Rd ,
- |Θ(v)ε,+| ≤ Cε, for all ε ∈ (0, 1),
- K(v)∆K(w) ⊂ Θ(v)C |v−w|,+, for v ,w ∈ Rd ,
- Θ(w) ⊂ Θ(v)C |v−w|,+, for v ,w ∈ Rd .

Figure: A sketch of the sets K , Kε,+, and Kε,−
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Examples

• A ball with a fixed radius:

K(v) ≡ B(0, r) where B(0, r) := {x ∈ Rd : |x | ≤ r} with r > 0.

• A ball with a radius depending on the speed:

K(v) = B(0, r(|v |)) where r : R+ → R+ is bounded and Lipschitz.

Θ(v) = ∂K(v)
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Examples

• A vision cone:

K(v) = C(r , v , θ(|v |)) :=

{
x : |x | ≤ r and − θ(|v |) ≤ cos−1

(
x · v
|x ||v |

)
≤ θ(|v |)

}
,

with 0 < θ(z) ∈ C∞(R) satisfying θ(z) = π for 0 ≤ z ≤ 1, θ(z) is decreasing for
z ≥ 1, and θ(z)→ θ∗ > 0 as |z| → +∞.

Θ(v) :=

{
∂C(r , v , θ(|v |)) ∪ R(v) if |v | ∈ (1/2, 1),

∂C(r , v , θ(|v |)) else ,

where R(v) = [a(v), b(v)] with

a(v) = −r
v

|v |
, b(v) = 2r(|v | − 1)

v

|v |
.
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Global weak solutions & stability

Definition: For a given T ∈ (0,∞), f is a weak solution of (5) on the time-interval
[0,T ) if and only if the following condition are satisfied:

(i) f ∈ L∞(0,T ; (L1
+ ∩ L∞)(Rd × Rd )) ∩ C([0,T ];P1(Rd × Rd )),

(ii) f satisfies the equation (5) in the weak sense.

Theorem(Carrillo-C.-Hauray-Salem 2016): Given an initial data satisfying

f0 ∈ (L1
+ ∩ L∞)(Rd × Rd ) ∩ P1(Rd × Rd ) , (6)

and assume further that f0 is compactly supported in velocity. Then there exists a
positive time T > 0 such that the system (5) with the sensitivity region set-valued
function K(v) satisfying (H1)-(H2) admits a unique weak solution
f ∈ L∞(0,T : (L1

+ ∩ L∞)(Rd × Rd )), which is also compactly supported in velocity.
Furthermore if fi , i = 1, 2 are two such solutions to the system (5) with initial data
fi (0) satisfying (6), we have

d1(f1(t), f2(t)) ≤ d1(f1(0), f2(0))eCt , for t ∈ [0,T ],

where C is a positive constant that depends only on the L∞(Rd × Rd × (0,T )) norm
of f1.

Weak-strong stability!
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Further extensions

Second-order model:

∂t f + v · ∇x f +∇v · (F (f )f ) = 0, (x , v) ∈ Rd × Rd , t > 0,

where the force term F (f ) can be chosen from two different types:

F (f )(x , v , t) :=


∫
ψ(x − y)1K(v)(x − y)h(w − v)f (y ,w) dydw (Cucker-Smale)∫
∇xϕ(x − y)1K(v)(x − y)f (y ,w) dydw (Attractive-Repulsive).

Here ψ, h, and ϕ denote the communication weight, velocity coupling, and interaction
potential, respectively.

First-order model:

∂tρ+∇x · (ρu) = 0, x ∈ Rd , t > 0,

where the vector field u is given by

u(x , t) :=

∫
Rd

1K(w(x))(x − y)∇xϕ(x − y)ρ(y) dy ,

and ϕ ∈W 1,∞(Rd ) and w is a given orientational field satisfying w ∈W 1,∞(Rd ) and
|w | ≥ w0 > 0.
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Thank you for your attention
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