Convergence to equilibrium for linear and homogeneous Fokker-Planck equations

Isabelle Tristani In collaboration with S. Mischler MATHEMATICAL TOPICS IN KINETIC THEORY

> May 12, 2016 Cambridge

- Introduction
 Fokker-Planck equations
 Main result
 Ideas of the proof
- 2) Discrete and classical Fokker-Planck equations
- 3) Fractional and classical FP equations

Homogeneous Fokker-Planck equations

Fokker-Planck equations

$$\partial_t f = \mathcal{D}_{\varepsilon} f + \operatorname{div}(vf) =: \Lambda_{\varepsilon} f, \quad \varepsilon \ge 0$$
 (FP_{\varepsilon})

- f = f(t, v) ≥ 0 is the homogeneous density of particles with $t \in \mathbb{R}^+$ the time and $v \in \mathbb{R}^d$ the velocity.
- $\mathcal{D}_{\varepsilon}$ is a diffusion operator which can be

Discrete
$$\mathcal{D}_{\varepsilon}(f) := (k_{\varepsilon} * f - f)/\varepsilon^2, \quad \varepsilon > 0$$

Fractional
$$\mathcal{D}_{\varepsilon}(f) := -(-\Delta)^{(2-\varepsilon)/2} f$$
, $\varepsilon > 0$

Classical
$$\mathcal{D}_0(f) := \Delta f$$

Homogeneous Fokker-Planck equations

Fokker-Planck equations

$$\partial_t f = \mathcal{D}_{\varepsilon} f + \operatorname{div}(vf) =: \Lambda_{\varepsilon} f, \quad \varepsilon \ge 0$$
 (FP_{\varepsilon})

- f = f(t, v) ≥ 0 is the homogeneous density of particles with $t \in \mathbb{R}^+$ the time and $v \in \mathbb{R}^d$ the velocity.
- $\mathfrak{D}_{\varepsilon}$ is a diffusion operator which can be

Discrete
$$\mathcal{D}_{\varepsilon}(f) := (k_{\varepsilon} * f - f)/\varepsilon^2, \quad \varepsilon > 0$$

Fractional $\mathcal{D}_{\varepsilon}(f) := -(-\Delta)^{(2-\varepsilon)/2}f, \quad \varepsilon > 0$
Classical $\mathcal{D}_{0}(f) := \Delta f$

We have $\mathcal{D}_{\varepsilon} \to \mathcal{D}_0$.

Properties of the FP equations

Consider f_t a solution of (FP_{ε}) with initial datum $f_0 = f$.

- Conservation of mass:

$$\langle f_t \rangle = \langle f \rangle, \quad \forall \ t \ge 0 \quad \text{where} \quad \langle g \rangle := \int_{\mathbb{R}^d} g \, dv.$$

- Conservation of positivity:

$$f \ge 0 \Rightarrow f_t \ge 0$$
, $\forall t \ge 0$.

- Unique positive stationary state with unit mass:

$$\exists ! G_{\varepsilon}$$
, $\Lambda_{\varepsilon} G_{\varepsilon} = 0$ and $\langle G_{\varepsilon} \rangle = 1$.

- Stationary state exponentially stable:

$$f_t - \langle f \rangle G_{\varepsilon} \to 0$$
 as $t \to \infty$ with an exponential rate.

Spectral analysis of self-adjoint operators, Poincaré or logarithmic Sobolev inequalities, Krein-Rutman theory for positive semigroups...

Properties of the FP equations

Consider f_t a solution of (FP_{ε}) with initial datum $f_0 = f$.

- Conservation of mass:

$$\langle f_t \rangle = \langle f \rangle, \quad \forall \ t \ge 0 \quad \text{where} \quad \langle g \rangle := \int_{\mathbb{D}^d} g \, dv.$$

- Conservation of positivity:

$$f \ge 0 \Rightarrow f_t \ge 0$$
, $\forall t \ge 0$.

- Unique positive stationary state with unit mass:

$$\exists ! G_{\varepsilon}$$
, $\Lambda_{\varepsilon} G_{\varepsilon} = 0$ and $\langle G_{\varepsilon} \rangle = 1$.

- Stationary state exponentially stable:

$$f_t - \langle f \rangle G_{\varepsilon} \to 0$$
 as $t \to \infty$ with an exponential rate.

 \hookrightarrow Can we handle the problem of convergence to equilibrium for these equations uniformly with respect to ε ?

Main result

Theorem (Mischler-T. '15)

There exists $\varepsilon_0 \in (0,2)$, a < 0 and $C \ge 1$ such that for any $f \in X$ and any $\varepsilon \in [0, \varepsilon_0]$,

$$||S_{\Lambda_{\varepsilon}}(t)f - \langle f \rangle G_{\varepsilon}||_{X} \le C e^{at} ||f - \langle f \rangle G_{\varepsilon}||_{X}, \quad \forall t \ge 0$$

where

- $S_{\Lambda_{\varepsilon}}(t)$ is the semigroup associated to the generator Λ_{ε} ,
- X is a weighted L^1 space independent of ε ,
- G_{ε} is the equilibrium of the equation of mass 1.

Study of the linear problem $\partial_t f = \Lambda f$:

Study of the linear problem $\partial_t f = \Lambda f$:

(1) Argument of enlargement of the space where the linear operator has a spectral gap: we know that Λ has a spectral gap in E, we prove that Λ also has a spectral gap in $\mathcal{E} \supset E$. [Mouhot '06] [Gualdani-Mischler-Mouhot '13]

Study of the linear problem $\partial_t f = \Lambda f$:

- (1) Argument of enlargement of the space where the linear operator has a spectral gap: we know that Λ has a spectral gap in E, we prove that Λ also has a spectral gap in $\mathcal{E} \supset E$. [Mouhot '06] [Gualdani-Mischler-Mouhot '13]
- (2) Perturbative argument for $\Lambda = \Lambda_{\varepsilon}$ such that $\Lambda_{\varepsilon} \to \Lambda_0$: we know that Λ_0 has a spectral gap, we prove that for ε small enough, Λ_{ε} also has a spectral gap in the same space. [Mischler-Mouhot '09] [T. '16]

For both arguments, we have to exhibit a splitting $\Lambda = A + B$ which satisfies:

- A regular
- 𝔻 (hypo)dissipative
- $AS_{\mathbb{B}}(t)$ regularizing.

- 1) Introduction
- 2) Discrete and classical Fokker-Planck equationsThe equationsMain result and idea of the proof
- 3) Fractional and classical FP equations

The equations

Discrete Fokker-Planck equation

$$\partial_t f = \frac{1}{\varepsilon^2} (k_\varepsilon * f - f) + \operatorname{div}(vf) =: \Lambda_\varepsilon f, \quad \varepsilon > 0$$

with $k \in W^{2,1}(\mathbb{R}^d) \cap L^1(\langle v \rangle^{r_0})$ with $r_0 > 0$ large enough which satisfies

$$\int_{\mathbb{R}^d} k(v) \begin{pmatrix} 1 \\ v \\ v \otimes v \end{pmatrix} dv = \begin{pmatrix} 1 \\ 0 \\ 2I_d \end{pmatrix} \quad \text{and} \quad k_{\varepsilon}(v) := \frac{1}{\varepsilon^d} k \left(\frac{v}{\varepsilon} \right), \ v \in \mathbb{R}^d.$$

Classical Fokker-Planck equation

$$\partial_t f = \Delta f + \operatorname{div}(vf) =: \Lambda_0 f$$

Main result

Theorem (Mischler-T. '15)

Consider q > d/2. There exists $\varepsilon_0 > 0$, $a_0 < 0$ such that: $\forall \varepsilon \in [0, \varepsilon_0]$, $\forall f \in L^1(\langle v \rangle^q)$, $\forall a > a_0$,

$$\|S_{\Lambda_\varepsilon}(t)f-\langle f\rangle\,G_\varepsilon\|_{L^1(\langle v\rangle^q)}\leq C_a\,e^{at}\|f-\langle f\rangle\,G_\varepsilon\|_{L^1(\langle v\rangle^q)},\quad\forall\,t\geq0$$

where $S_{\Lambda_{\varepsilon}}(t)$ is the semigroup associated to the generator Λ_{ε} , G_{ε} is the equilibrium of the equation of mass 1.

Main result

Theorem (Mischler-T. '15)

Consider q > d/2. There exists $\varepsilon_0 > 0$, $a_0 < 0$ such that: $\forall \varepsilon \in [0, \varepsilon_0]$, $\forall f \in L^1(\langle v \rangle^q)$, $\forall a > a_0$,

$$||S_{\Lambda_{\varepsilon}}(t)f - \langle f \rangle G_{\varepsilon}||_{L^{1}(\langle v \rangle^{q})} \leq C_{a} e^{at} ||f - \langle f \rangle G_{\varepsilon}||_{L^{1}(\langle v \rangle^{q})}, \quad \forall t \geq 0$$

where $S_{\Lambda_{\varepsilon}}(t)$ is the semigroup associated to the generator Λ_{ε} , G_{ε} is the equilibrium of the equation of mass 1.

- First step of the proof: use a perturbative argument to obtain a result in $H^3(\langle v \rangle^r)$.
- Second step of the proof: use an enlargement argument to conclude.

Step 1 of the proof: perturbative argument

- Spaces at stake:
$$m(v) = \langle v \rangle^r$$
, $r > d/2 + 6$
 $X_1 := H^6(m) \subset X_0 := H^3(m) \subset X_{-1} := L^2(m)$.

Step 1 of the proof: perturbative argument

- Spaces at stake: $m(v) = \langle v \rangle^r$, r > d/2 + 6

$$X_1 := H^6(m) \subset X_0 := H^3(m) \subset X_{-1} := L^2(m).$$

- Consider $\chi_R \in \mathcal{D}(\mathbb{R}^d)$, $\mathbb{1}_{B(0,R)} \leq \chi_R \leq \mathbb{1}_{B(0,2R)}$ and $\chi_R^c := 1 - \chi_R$. For $\varepsilon > 0$, we define

$$A_{\varepsilon}f := M\chi_R(k_{\varepsilon} * f)$$
 and $B_{\varepsilon}f := \Lambda_{\varepsilon}f - A_{\varepsilon}f$.

For $\varepsilon = 0$, we define

$$A_0 f := M \chi_R f$$
 and $B_0 f := \Lambda_0 f - A_0 f$.

Convergence of the splitting

We prove that:

$$\|\mathcal{A}_{\varepsilon} - \mathcal{A}_0\|_{\mathfrak{B}(X_i, X_{i-1})} \xrightarrow[\varepsilon \to 0]{} 0 \quad \text{and} \quad \|\Lambda_{\varepsilon} - \Lambda_0\|_{\mathfrak{B}(X_i, X_{i-1})} \xrightarrow[\varepsilon \to 0]{} 0.$$

We have:

$$A_{\varepsilon}f - A_0f = M\chi_R(k_{\varepsilon}*f - f)$$
 and $\Lambda_{\varepsilon} - \Lambda_0 = D_{\varepsilon} - \Delta$

Taylor expansion to deal with $\mathcal{D}_{\varepsilon} - \Delta$.

Properties of the limit operator Λ_0

Theorem (Gualdani-Mischler-Mouhot '13 and Mischler-Mouhot '14)

Consider $i \in \{-1,0,1\}$. There exists $a_0 < 0$ such that for any $f \in X_i$ and any $a > a_0$,

$$||S_{\Lambda_0}(t)f - G_0\langle f \rangle||_{X_i} \le C_a e^{at} ||f - G_0\langle f \rangle||_{X_i}, \quad \forall \ t \ge 0$$

where $S_{\Lambda_0}(t)$ is the semigroup associated to the generator Λ_0 and G_0 is the unique equilibrium of the equation of mass 1.

Regularity of $\mathcal{A}_{\varepsilon}$ and dissipativity of $\mathcal{B}_{\varepsilon}$ - I

- $A_ε$ is bounded in X_i , i = −1,0,1 uniformly with respect to ε.
- Let a > d/2 q + 6. There exists $\varepsilon_0 > 0$, $M \ge 0$ and $R \ge 0$ such that for any $\varepsilon \in [0, \varepsilon_0]$, $\mathcal{B}_{\varepsilon} a$ is hypodissipative in X_i , i = -1, 0, 1 with a which does not depend on ε .

Regularity of $\mathcal{A}_{\varepsilon}$ and dissipativity of $\mathcal{B}_{\varepsilon}$ - I

- A_{ε} is bounded in X_i , i = -1, 0, 1 uniformly with respect to ε .
- Let a > d/2 q + 6. There exists $\varepsilon_0 > 0$, $M \ge 0$ and $R \ge 0$ such that for any $\varepsilon \in [0, \varepsilon_0]$, $\mathcal{B}_{\varepsilon} a$ is hypodissipative in X_i , i = -1, 0, 1 with a which does not depend on ε .

The example of $L^2(m)$. Consider $f_t := S_{\mathcal{B}_{\varepsilon}}(t)f$, then

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|f_t\|_{L^2(m)}^2 = \int_{\mathbb{R}^d} (\mathfrak{B}_{\varepsilon}f_t)f_t \, m^2.$$

 \hookrightarrow We are thus going to estimate $\int_{\mathbb{R}^d} (\mathfrak{B}_{\varepsilon} f) f m^2$.

Dissipativity of $\mathcal{B}_{\varepsilon}$ - II

We have:

$$\mathcal{B}_{\varepsilon}f = \frac{1}{\varepsilon^{2}}(k_{\varepsilon}*f - f) + \operatorname{div}(vf) - M\chi_{R}(k_{\varepsilon}*f)$$
$$= \left(\frac{1}{\varepsilon^{2}} - M\right)(k_{\varepsilon}*f - f) + M\chi_{R}^{c}(k_{\varepsilon}*f - f) + \operatorname{div}(vf) - M\chi_{R}f.$$

Estimate of $\int_{\mathbb{R}^d} (\mathfrak{B}_{\varepsilon} f) f m^2$:

$$\begin{split} \int_{\mathbb{R}^d} (\mathcal{B}_{\varepsilon} f) f \, m^2 &= \left(\frac{1}{\varepsilon^2} - M\right) \int_{\mathbb{R}^d} (k_{\varepsilon} * f - f) f \, m^2 \\ &+ \int_{\mathbb{R}^d} M \chi_R^c (k_{\varepsilon} * f - f) f \, m^2 \\ &+ \int_{\mathbb{R}^d} \operatorname{div}(v f) f \, m^2 - \int_{\mathbb{R}^d} M \chi_R f^2 \, m^2 \\ &=: T_1 + T_2 + T_3 + T_4. \end{split}$$

Dissipativity of $\mathcal{B}_{\varepsilon}$ - III

We have the following estimates:

$$\begin{split} T_1 &\leq \text{non positive term} + C \int_{\mathbb{R}^d} f^2(v) \, m^2(v) \, \frac{1}{\langle v \rangle^2} \, dv \\ T_2 &\leq M \, C_R \, \kappa_\varepsilon \int_{\mathbb{R}^d} f^2 \, m^2, \quad \kappa_\varepsilon \xrightarrow[\varepsilon \to 0]{} 0 \\ T_3 + T_4 &= \int_{\mathbb{R}^d} f^2(v) \, m^2(v) \left(\frac{d}{2} - \frac{r \, |v|^2}{\langle v \rangle^2} - M \chi_R(v) \right) dv \end{split}$$

Dissipativity of $\mathfrak{B}_{\varepsilon}$ - III

We obtain:

$$\int_{\mathbb{R}^{d}} (\mathbb{B}_{\varepsilon} f) f m^{2}$$

$$\leq \int_{\mathbb{R}^{d}} f^{2} m^{2} \left(\underbrace{C \langle v \rangle^{-2} + \frac{d}{2} - \frac{r |v|^{2}}{\langle v \rangle^{2}} + M C_{R} \kappa_{\varepsilon} - M \chi_{R}}_{\varepsilon \to 0, |v| \to \infty} \right)$$

Dissipativity of $\mathcal{B}_{\varepsilon}$ - III

We obtain:

$$\int_{\mathbb{R}^{d}} (\mathcal{B}_{\varepsilon} f) f \, m^{2}$$

$$\leq \int_{\mathbb{R}^{d}} f^{2} \, m^{2} \left(\underbrace{C \langle v \rangle^{-2} + \frac{d}{2} - \frac{r |v|^{2}}{\langle v \rangle^{2}} + M C_{R} \kappa_{\varepsilon}}_{\varepsilon \to 0, |v| \to \infty} - M \chi_{R} \right)$$

For a > d/2 - r, one can find M, R, ε_0 such that for any $\varepsilon \in (0, \varepsilon_0]$,

$$\int_{\mathbb{R}^d} (\mathcal{B}_{\varepsilon} - a) f f \, m^2 \le 0$$

and thus

$$\left\|S_{\mathcal{B}_{\varepsilon}}(t)f\right\|_{L^{2}(m)}\leq e^{at}\|f\|_{L^{2}(m)}.$$

Regularization properties of $A_{\varepsilon}S_{\mathcal{B}_{\varepsilon}}(t)$

We prove that there exists $n \in \mathbb{N}$ such that:

$$\|(\mathcal{A}_{\varepsilon}S_{\mathcal{B}_{\varepsilon}})^{(*n)}(t)\|_{X_i\to X_{i+1}}\leq C_a e^{at}, \quad i=-1,0.$$

We consider $f_t = S_{\mathcal{B}_{\varepsilon}}(t)f$. We have, if $\varepsilon_0 > 0$ is small enough, for any $\varepsilon \in (0, \varepsilon_0]$:

$$\frac{1}{2} \frac{d}{dt} \|f_t\|_{L^2(m)}^2 = \int_{\mathbb{R}^d} (\mathcal{B}_{\varepsilon} f_t) f_t m^2$$

$$\leq \underbrace{-\frac{1}{4\varepsilon^2} \int_{\mathbb{R}^d \times \mathbb{R}^d} (f_t(y) - f_t(v))^2 k_{\varepsilon}(v - y) dy dv}_{\text{gain of regularity}} + a \|f_t\|_{L^2(m)}^2$$

Summary

There exist $a_0 < 0$ and $\varepsilon_0 > 0$ such that for any $\varepsilon \in [0, \varepsilon_0]$:

- For any $i = -1, 0, 1, A_ε ∈ \Re(X_i)$ uniformly in ε.
- For any $a > a_0$, there exists $C_a > 0$ such that

$$\forall i = -1, 0, 1, \quad \forall t \ge 0, \quad ||S_{\mathcal{B}_{\varepsilon}}(t)||_{X_i \to X_i} \le C_a e^{at}.$$

- For any $a > a_0$, there exist $n \ge 1$ and $C_{n,a} > 0$ such that

$$\forall i = -1, 0, \quad \|(\mathcal{A}_{\varepsilon} S_{\mathcal{B}_{\varepsilon}})^{(*n)}(t)\|_{X_{i} \to X_{i+1}} \leq C_{n,a} e^{at}.$$

- There exists a function $\eta(\varepsilon) \xrightarrow[\varepsilon \to 0]{} 0$ such that

$$\forall i = -1, 0, \quad \|\mathcal{A}_{\varepsilon} - \mathcal{A}_0\|_{X_i \to X_i} + \|\mathcal{B}_{\varepsilon} - \mathcal{B}_0\|_{X_i \to X_{i-1}} \le \eta(\varepsilon).$$

- Σ(Λ₀) ∩ { $z ∈ \mathbb{C}$, $\Re z > a_0$ } = {0} in spaces X_i , i = -1, 0, 1, where 0 is a one dimensional eigenvalue.

Conclusion - I

Thanks to the perturbative argument [Mischler-Mouhot '09] and [T. '16], we obtain the existence of $a_0 < 0$ and $\varepsilon_0 > 0$ such that:

for any
$$\varepsilon \in [0, \varepsilon_0]$$
, for any $a > a_0$ and for any $f \in X_0 = H^3(\langle v \rangle^r)$,

$$||S_{\Lambda_{\varepsilon}}(t)f - \langle f \rangle G_{\varepsilon}||_{X_0} \le C_a e^{at} ||f - \langle f \rangle G_{\varepsilon}||_{X_0}, \quad \forall t \ge 0.$$

Step 2 of the proof: enlargement argument

Small space: $E := H^3(\langle v \rangle^r)$

Large space: $\mathcal{E} := L^1(\langle v \rangle^q)$

Using the same splitting as previously, we have:

- \star $A \in \mathfrak{B}(E)$ and $A \in \mathfrak{B}(E)$.
- ★ \mathcal{B} a is hypodissipative in \mathcal{E} .
- ★ There exist $n \ge 1$ and $C_{n,a} > 0$ such that

$$||(\mathcal{A}S_{\mathcal{B}})^{(*n)}(t)||_{\mathcal{E}\to E} \leq C_{n,a}e^{at}.$$

We then use the enlargement argument to conclude.

Conclusion - II

Theorem (Mischler-T. '15)

Consider q > d/2. There exists $\varepsilon_0 \in (0,2)$ and $a_0 < 0$ such that $\forall \varepsilon \in [0, \varepsilon_0]$, $\forall t \ge 0$, $\forall f \in L^1(\langle v \rangle^q)$, $\forall a > a_0$,

$$\|S_{\Lambda_\varepsilon}(t)f - \langle f \rangle \, G_\varepsilon\|_{L^1(\langle v \rangle^q)} \leq C_a e^{at} \|f - \langle f \rangle \, G_\varepsilon\|_{L^1(\langle v \rangle^q)}, \quad \forall \, t \geq 0$$

where $S_{\Lambda_{\varepsilon}}(t)$ is the semigroup associated to the generator Λ_{ε} , G_{ε} is the equilibrium of the equation of mass 1.

- 1) Introduction
- 2) Discrete and classical Fokker-Planck equations
- 3) Fractional and classical FP equationsThe equationsMain result and idea of the proof

The equations

Fractional Fokker-Planck equation

$$\partial_t f = -(-\Delta)^{\frac{2-\varepsilon}{2}} f + \operatorname{div}(vf) =: \Lambda_{\varepsilon} f, \quad \varepsilon \in (0,2)$$

with

$$-(-\Delta)^{\frac{2-\varepsilon}{2}}f(v) := c_{\varepsilon} \int_{\mathbb{R}^d} \frac{f(y) - f(v) - \chi(y-v)(y-v) \cdot \nabla f(v)}{|y-v|^{d+2-\varepsilon}} dy$$

and

$$\frac{c_{\varepsilon}}{2} \int_{|z|<1} \frac{z_1^2}{|z|^{d+2-\varepsilon}} dz = 1, \text{ which implies } c_{\varepsilon} \approx \varepsilon.$$

Classical Fokker-Planck equation

$$\partial_t f = \Delta f + \operatorname{div}(vf) =: \Lambda_0 f$$

Main result

Theorem (T. '15 and Mischler-T. '15)

Assume $\varepsilon_0 \in (0,2)$ and $q < 2 - \varepsilon_0$. There exists $a_0 < 0$ such that $\forall \varepsilon \in [0,2-\varepsilon_0], \forall f \in L^1(\langle v \rangle^q), \forall a > a_0$,

$$\|S_{\Lambda_{\varepsilon}}(t)f-G_{\varepsilon}\langle f\rangle\|_{L^{1}(\langle v\rangle^{q})}\leq C_{a}e^{at}\|f-G_{\varepsilon}\langle f\rangle\|_{L^{1}(\langle v\rangle^{q})},\quad\forall\,t\geq0$$

where $S_{\Lambda_{\varepsilon}}(t)$ is the semigroup associated to the generator Λ_{ε} , G_{ε} is the equilibrium of the equation of mass 1.

We use an enlargement argument for each $\varepsilon \in [0, 2 - \varepsilon_0]$.

Enlargement argument

Spaces at stake:
$$m(v) = \langle v \rangle^q$$
, $0 < q < 2 - \varepsilon_0$
$$\mathbb{E}_{\varepsilon} := L^2(G_{\varepsilon}^{-1/2}) \subset \mathcal{E} := L^1(m).$$

Enlargement argument

Spaces at stake:
$$m(v) = \langle v \rangle^q$$
, $0 < q < 2 - \varepsilon_0$
 $\mathsf{E}_\varepsilon := L^2(G_\varepsilon^{-1/2}) \subset \mathcal{E} := L^1(m)$.

Theorem (Gentil-Imbert '08)

There exists a constant $\lambda > 0$ such that for any $\varepsilon \in (0,2)$,

- in E_{ε} = $L^2(G_{\varepsilon}^{-1/2})$, there holds $\Sigma(\Lambda_{\varepsilon}) \cap D_{-\lambda} = \{0\}$;
- the following estimate holds: \forall *f* ∈ *E*_ε, \forall *a* > − λ ,

$$\|S_{\bigwedge_{\varepsilon}}(t)f-G_{\varepsilon}\langle f\rangle\|_{E_{\varepsilon}}\leq e^{at}\|f-G_{\varepsilon}\langle f\rangle\|_{E_{\varepsilon}},\quad\forall\ t\geq0.$$

 \hookrightarrow We have a result in E_{ε} for each $\varepsilon \in [0, 2 - \varepsilon_0]$ with a rate of decay uniform with respect to ε .

Enlargement argument

Spaces at stake:
$$m(v) = \langle v \rangle^q$$
, $0 < q < 2 - \varepsilon_0$
 $\mathbb{E}_{\varepsilon} := L^2(G_{\varepsilon}^{-1/2}) \subset \mathcal{E} := L^1(m)$.

Theorem (Gentil-Imbert '08)

There exists a constant $\lambda > 0$ such that for any $\varepsilon \in (0,2)$,

- in $E_{\varepsilon} = L^2(G_{\varepsilon}^{-1/2})$, there holds $\Sigma(\Lambda_{\varepsilon}) \cap D_{-\lambda} = \{0\}$;
- the following estimate holds: $\forall f \in E_{\varepsilon}, \forall a > -\lambda$,

$$||S_{\Lambda_{\varepsilon}}(t)f - G_{\varepsilon}\langle f \rangle||_{E_{\varepsilon}} \le e^{at} ||f - G_{\varepsilon}\langle f \rangle||_{E_{\varepsilon}}, \quad \forall \ t \ge 0.$$

 \hookrightarrow We have a result in E_{ε} for each $\varepsilon \in [0, 2 - \varepsilon_0]$ with a rate of decay uniform with respect to ε .

We define for $\varepsilon \in [0, 2]$:

$$A_{\varepsilon}f := M\chi_R f$$
 and $B_{\varepsilon}f := \Lambda_{\varepsilon}f - A_{\varepsilon}f$.

Dissipativity and regularization properties

- To get the dissipativity properties of $\mathcal{B}_{\varepsilon}$, we proceed similarly as in the previous part since we have an estimate of type

$$\int_{\mathbb{R}^d} (\wedge_{\varepsilon} f) \operatorname{sign} f \, m \leq \text{ non positive term } + \int_{\mathbb{R}^d} |f| \, m \psi_{m,\varepsilon}$$

with

$$\psi_{m,\varepsilon} = \frac{-(-\Delta)^{\frac{2-\varepsilon}{2}}(m)}{m} - \frac{v \cdot \nabla m}{m} \xrightarrow{\infty} -q < 0$$
uniformly in $\varepsilon \in [0, 2-\varepsilon_0]$.

- The regularization properties of $A_{\varepsilon}S_{\mathcal{B}_{\varepsilon}}(t)$ comes from:
 - + a gain in weight thanks to A_{ε} ,
 - + a gain of integrability $L^1 \to L^2$ from $S_{\mathcal{B}_{\varepsilon}}(t)$ using the fractional Nash inequality

$$||f||_{L^2} \le C||f||_{L^1}^{\alpha/(d+\alpha)}||f||_{\dot{H}^{\alpha/2}}^{d/(d+\alpha)}.$$

Conclusion

Theorem (Mischler-T. '15)

Assume $\varepsilon_0 \in (0,2)$ and $q < 2 - \varepsilon_0$. There exists $a_0 < 0$ such that $\forall \ \epsilon \in [0,2-\varepsilon_0], \ \forall \ t \geq 0, \ \forall \ f \in L^1(\langle v \rangle^q), \ \forall \ a > a_0$,

$$\|S_{\Lambda_{\varepsilon}}(t)f-G_{\varepsilon}\langle f\rangle\|_{L^{1}(\langle v\rangle^{q})}\leq C_{a}\,e^{at}\|f-G_{\varepsilon}\langle f\rangle\|_{L^{1}(\langle v\rangle^{q})}$$

where $S_{\Lambda_{\varepsilon}}(t)$ is the semigroup associated to the generator Λ_{ε} , G_{ε} is the equilibrium of the equation of mass 1.

Thanks for your attention!