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Homogeneous Fokker-Planck equations

Fokker-Planck equations

3.f = D.f +div(vf) = Af, €>0  (FP.)

- f =f(t,v) > 0 is the homogeneous density of particles with
t € R* the time and v € R? the velocity.

- D, is a diffusion operator which can be
Discrete  Do(f):= (ke f —f)/e%, €>0
Fractional D,(f) := —(-A)Z¥2f, ¢>0
Classical  Dy(f) := Af
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Homogeneous Fokker-Planck equations

Fokker-Planck equations

3.f = D.f +div(vf) = Af, €20  (FP.)

- f =f(t,v) > 0is the homogeneous density of particles with
t € R* the time and v € R? the velocity.

- D, is a diffusion operator which can be

Discrete  D(f) '—( *f —f)/e?, £>0
Fractional D.(f):= )ZE2f e>0
Classical  Dy(f) := f

We have D, — D,.
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Properties of the FP equations

Consider f; a solution of (FP,) with initial datum f, = f.
- Conservation of mass:

(fey=(f) Vt=0 where (g):= J dgdv.
— Conservation of positivity: ’
f=20=f>0, Vt>o.
— Unique positive stationary state with unit mass:
A1G,, A,G.,=0 and (G.)=1.
— Stationary state exponentially stable:
fi—(f)G. >0 as t— oo withan exponential rate.

Spectral analysis of self-adjoint operators, Poincaré or logarithmic Sobolev
inequalities, Krein-Rutman theory for positive semigroups...
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Properties of the FP equations

Consider f; a solution of (FP,) with initial datum f; = f.
— Conservation of mass:

py={) Vt=0 where (g):= J dgdv.
— Conservation of positivity: :
f=20=f>0, Vt>o0.
— Unique positive stationary state with unit mass:
A'G,, NG, =0 and (G,)=1.
— Stationary state exponentially stable:
fi—(f)G:. >0 as t— oo withan exponential rate.

< Can we handle the problem of convergence to equilibrium
for these equations uniformly with respect to €?
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Main result

Theorem (Mischler-T. ’15)

There exists €y € (0,2), a< 0 and C > 1 such that for any f € X and
any € € [0, &),

ISn, (B = (F)Gellx < Ce™|If =(f)Gellx, Yt>0
where

— Sp,(t) is the semigroup associated to the generator N\,
— X is a weighted L' space independent of ¢,

— G is the equilibrium of the equation of mass 1.
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Ideas of the proof

Study of the linear problem d;f = Af:
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Ideas of the proof

Study of the linear problem d,f = Af:

(1) Argument of enlargement of the space where the linear op-
erator has a spectral gap: we know that A has a spectral gap
in E, we prove that A also has a spectral gap in € DE.
[Mouhot ’06] [Gualdani-Mischler-Mouhot *13]
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Ideas of the proof

Study of the linear problem d,f = Af:

(1) Argument of enlargement of the space where the linear op-
erator has a spectral gap: we know that A has a spectral gap
in E, we prove that /A also has a spectral gap in E D E.
[Mouhot ’06] [Gualdani-Mischler-Mouhot ’13]

(2) Perturbative argument for A = A, such that A, — Ay we
know that Ay has a spectral gap, we prove that for ¢ small

enough , A\, also has a spectral gap in the same space.
[Mischler-Mouhot *09] [T. ’16]
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Ideas of the proof

For both arguments, we have to exhibit a splitting A = A+ B
which satisfies:

- Aregular
- B (hypo)dissipative
— AS3(t) regularizing.
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The equations

Discrete Fokker-Planck equation

3.f = é(kg*f—f)+div(vf) —Af, £>0

with k € W2I(R) n L'((v)) with ry > 0 large enough which

satisfies

1 1 1 y

f k(v)f v |dv=|0 and kg (v):= —dk(—), veRd
R 4% 21y € €

Classical Fokker-Planck equation

dif = Af +div(vf) = Nof
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Main result

Theorem (Mischler-T. ’15)

Consider q > d/2. There exists gy > 0, ay < 0 such that: ¥ € € [0, &,
VfeLl(v)9),Ya>a,

ISa, (8)f = ) Gellryay < Ca€®llf =) Gelliryay Y E>0

where Sy _(t) is the semigroup associated to the generator N\, G,
is the equilibrium of the equation of mass 1.
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Main result

Theorem (Mischler-T. ’15)

Consider q > d/2. There exists gy > 0, ay < 0 such that: V € € [0, &,
Vfel'(v)9),Va> a,

ISn, (O = <F) Gellorquya) < Ca®lIf =) Gellirgye, Y20

where Sy _(t) is the semigroup associated to the generator N\, G,
is the equilibrium of the equation of mass 1.

— First step of the proof: use a perturbative argument to obtain
aresult in H3((v)").

— Second step of the proof: use an enlargement argument to
conclude.
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Step 1 of the proof: perturbative argument

— Spaces at stake: m(v)=(v)", r>d/2+6

X; := Ho(m) c X, := H3(m) c X_; := L*(m).




Step 1 of the proof: perturbative argument

— Spaces at stake: m(v) =(v)", r>d/2+6

X; 1= H%(m) C X, := H3(m) c X_q := L*(m).

~ Consider x € D(RY), Tgo,R) < Xr < Tp(o,28) and x := 1 xr.
For ¢ > 0, we define

Aef i=Mxgr(kexf) and B.f =N f-Af.

For € = 0, we define

Aof :=Mxrf and Byf := Nof —Ayf.
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Convergence of the splitting

We prove that:
e = Aolles(x;,x,_) =0 ° and 1A = Mollosx; x. ) =0
We have:
Aef —Aof =Mxplkef~f) and A.=Ng=D.-A

Taylor expansion to deal with D, — A.
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Properties of the limit operator A,

Theorem (Gualdani-Mischler-Mouhot *13 and

Mischler-Mouhot *14)

Consider i € {—1,0,1}. There exists ay < 0 such that for any f € X;
and any a > ay,

157, () = Go{F)llx, < Cae®IIf = Go(f)llx,, V>0

where Sy (t) is the semigroup associated to the generator N\, and
Gy is the unique equilibrium of the equation of mass 1.
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Regularity of A, and dissipativity of B, - |

- A, is bounded in X;, i = —-1,0, 1 uniformly with respect to .
~ Let a > d/2—-q+6. There exists ¢ >0, M> 0 and R > 0

such that for any € € [0,¢&y], B. — a is hypodissipative in X,
i=-1,0,1 with a which does not depend on ¢.
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Regularity of A, and dissipativity of B, - |

- A, is bounded in X;, i = —1,0,1 uniformly with respect to ¢.
— Let a > d/2—q+6. There exists g >0, M > 0and R >0

such that for any ¢ € [0,&y], B. — a is hypodissipative in X,
i=-1,0,1 with a which does not depend on &.

The example of Lz( ). Consider f; := S _(t)f, then
L i = de(Bgft)ftm

< We are thus going to estimate J[Rd (Bgf)fm2
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Dissipativity of B, - I

We have:
Bef = (ke f =)+ diviof) - Mic (ke )

= (3~ M) ke 2 1)+ M (ke = f =)+ div(of) ~ M.
Estimate of JRd (Bef)f m?:

| oo =(G-mM) | teor-pira
o [ Mrkons-nf
+fddiv(vf)fmz—fdM)(szm2
R R

= T1+T2+T3+T4.
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Dissipativity of B, - Il

We have the following estimates:

1
de

T; < non positive term+ C FA(v)m?(v)
Rd
T, < MCRKeJ- fim?, x,—0
Rd e—0
d rlvf?

I3+ 1y = Rdfz(v)mz(v) (2 - (v)2

—M)(R(v)) dv

14/25



Dissipativity of B, - Il

We obtain:
f (Bf)f P
[Rd
od P
2 2 2 e _
szdf m (c<v> * 5 e T MCer M)(R)
d/2—r<0

£—0,|v|—>c0
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Dissipativity of B, - Il

We obtain:

| s

2
<[ r mz(C(v)_z L4
[Rd

2 (v

—d/2-r<0

£—0,|v| >0

+MCRK£ MXR)

For a> d/2—r, one can find M, R, €q such that for any € € (0, &],

J (B —a)f fm*<0
Rd

and thus
155 (] 2y < N2
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Regularization properties of A Sz (t)

We prove that there exists n e N such that:

(A:S5,) " (Dllxx., < Cae”, i=-1,0.

We consider f; = Sg_(t)f. We have, if &, > 0 is small enough, for
any € € (0,&]:

1d
3l = [ (Bfi

1

2
S22 Jo oy VS OD kelv=y)dy v+ allfilz

gain of regularity
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Summary
There exist ay < 0 and gy > 0 such that for any € € [0, ¢ |

- Forany i=-1,0,1, A, € B(X;) uniformly in ¢.
- For any a> qy, there exists C, > 0 such that

Vi==1,0,1, Vt>0, [[Ss ()ly .x <C,e.
- For any a> ay, there exist n> 1 and C, ;> 0 such that
Vi==1,0, [(A:S5)"" (D)lx-x., < Cnae™.

— There exists a function 7(¢) P 0 such that
E—>

Yi=-1,0, ”‘Ae _‘A0||X,—>X,- + ”rBe - rBO||X,-—>X,-,] < 77(5)

- X(Ng)N{zeC, Rez > ag} = {0} in spaces Xj, i =—-1,0,1, where
0 is a one dimensional eigenvalue.
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Conclusion - |

Thanks to the perturbative argument [Mischler-Mouhot ’09] and
[T. 16], we obtain the existence of ay < 0 and &3 > 0 such that:

for any € € [0, ], for any a> ay and for any f € X, = H*((v)"),

IS (8)f = (F) Cellx, < Cae®llf =(f) Gellx,,  Vt=0.
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Step 2 of the proof: enlargement argument

Small space: FE:= H*((v)")
Large space: & := L'((v)9)

Using the same splitting as previously, we have:
* A e B(E)and A e B(E).

* B —ais hypodissipative in £.

* There exist n>1and C,, > 0 such that

(ASE) ™ (t)le— < Cpae™.

We then use the enlargement argument to conclude.
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Conclusion - Il

Theorem (Mischler-T. ’15)

Consider q > d/2. There exists gy € (0,2) and ay < 0 such that
Vee[0,&),,Yt>0,Yfel(v)9),Ya> a,

ISa, (8)f = ) Gelliryay < Ca€®llf =) Gellryay Y E=0

where Sy _(t) is the semigroup associated to the generator N\, G,
is the equilibrium of the equation of mass 1.
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The equations

Fractional Fokker-Planck equation

A f = —(-A) 7 f+div(vf) = A f, e€(0,2)

with
5 f) =fv)=x(y=v)y-v)-Vf(v)
_(—A) 2 f(V) Ce Rd |y_ V|d+2 £
and .
Cg | |dz+2 - dz=1, whichimplies ¢, ~e¢.
lzl<1 12

Classical Fokker-Planck equation

dif = Af +div(vf) = Nof
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Main result

Theorem (T. 15 and Mischler-T. ’15)

Assume g € (0,2) and q < 2 —¢&,. There exists ay < 0 such that
Vee[0,2—¢g), VfeLl'((v)9),Ya> a,

ISa, (B)f = Gei W rqya) < Ca€™Ilf = Ge{Pllrqyayy Y20

where Sy _(t) is the semigroup associated to the generator N\, G,
is the equilibrium of the equation of mass 1.

We use an enlargement argument for each € € [0,2 — &g
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Enlargement argument

Spaces at stake: m(v)=(v)9, 0<qg<2-¢
E.:= %G "*) cé&:=L"(m)
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Enlargement argument
Spaces at stake: m(v)=(v)9, 0<qg<2-¢
E.:=L2(G."?)c&:=L"(m).

Theorem (Gentil-Imbert *08)

There exists a constant A > 0 such that for any ¢ € (0, 2)
~ inE, = 1*(GZ"?), there holds ¥ (A;)ND_, = {0};
— the following estimate holds: ¥ f € E.,Va> -2,

ISn, (O = G(Flle, < e”Ilf = Ge{flle, V=0

< We have a result in E, for each € € [0,2 — &¢]
with a rate of decay uniform with respect to €
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Enlargement argument

Spaces at stake: m(v)=(v)9, 0<qg<2-¢

E,:= %G ) cé&:=L"(m)

Theorem (Gentil-Imbert *08)

There exists a constant A > 0 such that for any ¢ € (0, 2),
— inE, = L*(GZ"?), there holds ¥ (A;)ND_, = {0};
— the following estimate holds: Vf € E.,¥V a> —A,

ISn, (Of = G(Plle, < e Ilf = Ge(flle, V>0

< We have a result in E, for each € € [0,2 — &¢]
with a rate of decay uniform with respect to €.

We define for € € [0, 2]:
Aef =Mxrf and B.f:=Nf-Af.
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Dissipativity and regularization properties

- To get the dissipativity properties of B, we proceed similarly
as in the previous part since we have an estimate of type

J (Aef)signf m < non positive term +J fImiy, .
Rd Rd
with

—(~A)2(m) v-Vm

= — — —qg<0
Pme p= 9

uniformly ine € [0,2 — &g

— The regularization properties of A, S5 () comes from:
+ a gain in weight thanks to A,,
+ a gain of integrability L' — L? from Sg_(t) using the fractional
Nash inequality
d/(d+a)

/(d+a)
Iz < Cllfll’Z “ IlfllHa/z

24/25



Conclusion

Theorem (Mischler-T. ’15)

Assume €y € (0,2) and q < 2 —¢,. There exists ay < 0 such that
Vee[0,2—¢g],Vt>0,YfeL'((v)9),Ya>a,

1Sn, (B)f = Ge{M1(qvya) < Ca€™IIf = Ge(PMllvye)

where Sp (t) is the semigroup associated to the generator N\, G,
is the equilibrium of the equation of mass 1.
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Thanks for your attention!



	Introduction
	Fokker-Planck equations
	Main result
	Ideas of the proof

	Discrete and classical Fokker-Planck equations
	The equations
	Main result and idea of the proof

	Fractional and classical FP equations
	The equations
	Main result and idea of the proof


