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The Boltzmann equation

F (t, x , v): density distribution (in space x ∈ Ω ⊂ R3 and velocity
v ∈ R3) of gas particles at time t.

∂tF + v · ∇xF︸ ︷︷ ︸
free transport

= Q(F ,F )︸ ︷︷ ︸
collisions

,

Q(F1,F2) = Qgain(F1,F2)− Qloss(F1,F2)

=

∫∫
R3×S2

|v − u|κ{F1(u′)F2(v ′)− F1(u)F2(v)}q0 dω du,

where v ′ = v + [(u − v) · ω]ω,
where u′ = u − [(u − v) · ω]ω.

Assume 0 < κ ≤ 1 (hard potential),
0 ≤ q0 ≤ C v−u

|v−u| · ω (angular cutoff).

The Maxwellian density µ(v) = exp{−v2/2} verifies Q(µ, µ) = 0.
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Boundary conditions

Ω is a bounded domain of R3.
We define in the phase space the
outgoing/incoming/grazing
boundary

γ+ = {(x , v) ∈ ∂Ω× R3 : v · n(x) > 0},

γ− = {(x , v) ∈ ∂Ω× R3 : v · n(x) < 0},

γ0 = {(x , v) ∈ ∂Ω× R3 : v · n(x) = 0}.

n(x)

x

Ω
 (x,v)
 ∈γ

(x,v)
∈γ 

+

-

 (x,v)∈γ0

Diffuse boundary condition:

∀(x , v) ∈ γ−, F (t, x , v) = cµ µ(v)

∫
u·n(x)>0

F (t, x , u) u · n(x) du.

Remark: µ(v) = exp{−v2/2} is an equilibrium of the system.
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Known results in general bounded domains

Existence of renormalized solutions (DiPerna-Lions type):
Hamdache, Arkeryd, Cercignani, Maslova, Mischler, ...

Existence of global strong solutions?
In a perturbative framework (following Ukai, Asano, Guiraud, ...).
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Known results in general bounded domains

Perturbative framework: F ∼ µ(v) = e−|v|
2/2.

Existence of global strong solutions in L∞x,v with a weight (in v) [Guo
10]

In convex domains: continuity away from the grazing boundary γ0

[Guo 10]

In non-convex domains: discontinuity created on the grazing
boundary and propagated along the (grazing) characteristics [Kim 11]

Ω

Continuity

Continuity

Discontin
uity

Ω
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Existence theorem

We use the notation
F =

√
µ f .

Assume Ω is a smooth bounded domain. Let 0 < θ < 1/4. Define

L∞,θx,v := L∞x,v (eθ|v|
2
dx dv).

Theorem (Existence/uniqueness, [Guo 10], [GKTT 13])
Let 0 < θ′ < θ < 1/4. Let f0 ≥ 0 in L∞,θx,v . There exists a unique
solution F =

√
µ f ≥ 0 of the Boltzmann equation with diffuse BC on

[0,T ∗) with T ∗ = T ∗(f0). Furthermore ∀T < T ∗,

sup
0≤t≤T

‖eθ
′|v|2 f (t)‖∞ .T ‖eθ|v|

2
f0‖∞.

If ‖eθ|v|
2
{f0 −

√
µ}‖∞ � 1, then T ∗ =∞.
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Sobolev regularity in convex domains [GKTT 13]

Assume Ω is a smooth strictly convex domain.
Assume f0 ≥ 0 in L∞,θx,v and f0 satisfies the diffuse boundary condition.

Theorem (W 1,p propagation, 1 < p < 2)
Assume p ∈ (1, 2) and ∇f0 ∈ Lp(Ω× R3). Then

∀T < T ∗, sup
0≤t≤T

‖∇f ‖pp(t) +

∫ T

0

∫∫
∂Ω×R3

|∇f |p|v .n|dS dv dt

.T ‖∇f0‖pp + P(‖eθ|v|
2
f0‖∞),

with P a polynomial.

Note: we use the notations ∇ = [∂t ,∇x ,∇v ], and
∂t f0 := −v · ∇x f0 +

√
µ−1Q(

√
µf0,
√
µf0).

Proof: entropy estimates, Grad’s estimates, Ukai’s lemma associated
with a specific treatment of the almost grazing boundary.
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Singularity at the grazing boundary

Formally, on the boundary

∂nf|γ =
1

v · n

{
−∂t f −

∑
(v · τi ) ∂τi f +

√
µ−1Q(

√
µf ,
√
µf )

}
.

We integrate on the incoming boundary∫
γ−

|∂nf |p|v · n|dSx dv .
∫
R3
|v · n|1−p︸ ︷︷ ︸

<∞ when p<2

.

I We define a kinetic distance α = α(x , v) which balances the
singularity.
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Kinetic distance

The (strictly convex) domain Ω is defined by

Ω = {x ∈ R3 : ξ(x) < 0}.

Define the kinetic distance

α(x , v) := |v · ∇xξ|2 − 2{v∇2
xξv}ξ(x) ≥ 0.

Main features:

I "distance": vanishes exactly on the grazing boundary

I "kinetic": invariant along the characteristics (up to some quantity
in |v |).

We therefore consider, for ω � 1,

d2
p (t, x , v) := e−ωt

√
1+v2

α(x , v)βp .
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Weighted Sobolev regularity in convex domains [GKTT 13]

Assume Ω is a smooth strictly convex domain.
Assume f0 ≥ 0 in L∞,θx,v and f0 satisfies the diffuse boundary condition.

Theorem (Weighted W 1,p propagation, p ∈ [2,∞])
Assume d2

p∇f0 ∈ Lp(Ω× R3). Then ∀T < T ∗, if p ∈ [2,∞[

sup
0≤t≤T

‖d2
p∇f ‖pp(t) +

∫ T

0

∫∫
∂Ω×R3

|d2
p∇f |p|v .n|dSx dv dt

.T ‖d2
p∇f0‖pp + P(‖eθ|v|

2
f0‖∞),

and if p =∞, sup ‖d2
p∇f ‖∞(t) .T ‖d2

p∇f0‖∞ + P(‖eθ|v|
2
f0‖∞),

where d2
p = d2

p (t, x , v) ≥ 0 vanishes on the grazing boundary γ0.

Theorem (C 1 propagation)
If d2
∞∇f0 ∈ C 0(Ω̄× R3) and ∂t f0 satisfies the diffuse boundary

condition, then f is C 1 away from the grazing boundary.
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Grazing trajectories

I We get rid of the grazing trajectories

SB := {(x , v) ∈ Ω̄× R3 : n(xb(x , v)) · v = 0}

by applying a cut-off on a tubular neigborhood of SB.

Ω



Regularity of the
Boltzmann Equation
in Bounded Domains

Ariane Trescases

Introduction

Convex domain

Non-convex domains

Conclusion

Grazing trajectories

I We get rid of the grazing trajectories

SB := {(x , v) ∈ Ω̄× R3 : n(xb(x , v)) · v = 0}

by applying a cut-off on a tubular neigborhood of SB.

Ω



Regularity of the
Boltzmann Equation
in Bounded Domains

Ariane Trescases

Introduction

Convex domain

Non-convex domains

Conclusion

BV regularity in non-convex domains [GKTT 14]

Assume Ω is a smooth bounded domain.
Assume f0 ≥ 0 in L∞,θx,v .

Theorem (BV propagation)
If f0 ∈ BV (Ω× R3), then ∀T < T ∗,

sup
0≤t≤T

||f (t)||BV .T ||f0||BV + P(||eθ|v|
2
f0||∞),

and ∇x,v fγ is a Radon measure σ(t) on ∂Ω× R3 such that∫ T

0
|σ(∂Ω× R3)|dt .T ||f0||BV + P(||eθ|v|

2
f0||∞).
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Recap and optimality of results

In convex domains In non-convex domains

C 0 away from γ0 [Guo 10] ��C 0: Discontinuity created on γ0

and propagated along the
W 1,p for 1 ≤ p < 2 grazing trajectories [Kim 11]

��H1: Ct-ex. (transport eq.) BV propagation

Weighted W 1,p for p ∈ [2,∞]

C 1 away from γ0

���W 2,1: Ct-ex.
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Further results and questions

Other boundary conditions
Specular boundary conditions: in convex domains, propagation of C 1

regularity away from γ0 (with the help of the kinetic distance)
[GKTT13]
Bounce-back boundary conditions: same [GKTT13], in non-convex
domains: propagation of discontinuity [Kim 11]
Maxwell boundary condition: continuity away from the grazing
trajectories [Briant Guo 15].

Non-isothermal boundary
Results of existence of strong solutions, uniqueness and stability
(exponential convergence towards the solution of the stationnary
problem) for a (not too much) varying boundary temperature.
Continuity propagation in convex domains [Esposito Guo Kim Marra
13].
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Thank you.
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